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Abstract

Though economists have made substantial progress toward formulating theories
of collusion in industrial cartels that account for important fact patterns, important
puzzles remain. Standard models of repeated interaction formalize the observation
that cartels keep participants in line through the threat of punishment, but they fail
to explain two important factual observations: first, apparently deliberate cheating
actually occurs; second, it frequently goes unpunished even when it is detected. We
propose a theory of “equilibrium business stealing” in cartels to bridge this gap between
theory and observation.

1 Introduction

An important objective of theoretical research in Industrial Organization is to achieve a
conceptual understanding of the mechanisms through which actual price-fixing cartels ar-
rive at collusive outcomes. Analyses of strategic models involving repeated interaction
have yielded important insights but also leave significant gaps. A serious shortcoming
of the simplest such theories is that neither deliberate cheating nor punishment occurs in
equilibrium, even though both are observed in practice.∗ Extensions involving imperfect

∗Examples of punishments have been widely discussed in the literature; see, e.g., Porter (1983), Green
and Porter (1984), and Harrington (2006). Instances of cheating are frequently identified in the context of
antitrust cases. For example, during litigation associated with the lysine cartel (which operated at least
from 1992 through 1995), an Ajinomoto executive testified that cheating was common but that “the range
of cheating is not so big . . . they kept their promise about 90 percent. Something like that.” [Connor
(2001).] With respect to business stealing, he noted that “taking the other’s customers happens all the
time.” [Chicago Tribune, 7/23/1998.]
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monitoring (beginning with Green and Porter, 1984) explain why punishments (such as
price wars) are observed, but do not account for deliberate cheating : in equilibrium, pun-
ishments are triggered only by events beyond the control of the cartel members, and not by
their intentional choices.∗ Moreover, according to those theories, if cheating did occur and
was detected, it would definitely trigger punishment. Yet it appears that observed business
stealing sometimes goes unpunished: instead of retaliating, cartel members urge each other
to recall their common interests and let cooler heads prevail.† These unresolved empirical
puzzles have important practical implications, in that attorneys for defendant companies
often point to evidence of business stealing, and to a purported lack of retaliation, as
“proof” that a cartel is ineffective.‡

Though intuitively plausible, the possibility that an imperfect but nevertheless effective
real-world cartel might exhibit some degree of deliberate business stealing, and that such
behavior might sometimes go unpunished despite detection, has as yet found no rigorous
theoretical articulation. In this paper, we attempt to bridge this important gap between
theory and observation by constructing a theory of equilibrium business stealing in imper-
fectly effective cartels. We formulate a model in which firms have natural advantages with
respect to serving particular market segments and must make “relationship investments”
(e.g., incur bid-preparation costs) to do business with specific customers. For intermediate
discount factors, some collusion is feasible but perfect collusion is not. Our agenda is to
study the the properties of imperfectly collusive equilibria in those settings.

Beginning with the case of two firms, our first main result shows that, under reasonably
general conditions, imperfectly collusive equilibria necessarily involve business stealing, in

∗To be clear, the theory of imperfect monitoring can in principle account for unintended cheating – e.g.,
apparent defections from collusive agreements attributable to “rogue employees” who are not involved in the
conspiracy. In particular, one could construct a model with imperfectly controlled sales personnel whom, in
equilibrium, each firm would instruct to quote some collusive prices (which means deliberate cheating would
not occur). However, analogously to Green-Porter (1984), “rogue” salespeople would periodically grant
price concessions (e.g., with the object of enhancing their own compensation given their false understanding
of their employer’s objectives). Because other firms would be unable to distinguish between actual and
rogue defections, all defections would have to occasionally trigger punishments.

†Such sentiments are well captured in remarks made by ADM executive Terrance Wilson during a
March 10, 1994 meeting of lysine executives: “[Lysine buyers] are not your friend. They are not my friend.
And we gotta have ’em. Thank God we gotta have ’em, but they are not my friends. You’re my friend. I
wanna be closer to you than I am to any customer... [L]et’s put the prices on the board. Let’s all agree
that’s what we’re gonna do and then walk out of here and do it.” [Justice Department.]

‡This strategy was employed, for instance, by defense attorneys during criminal prosecution of several
top ADM executives following discovery of the lysine cartel. [Connor (2000).] News coverage of the trial
described the defense’s strategy as follows: “Top executives of Archer Daniels Midland Co. ‘busted up a
longstanding Asian cartel,’ introducing ‘fierce competition’ into the market for a livestock-feed additive,
a defense attorney said... [ADM] was ‘stealing customers’ and ‘undercutting competitors’ at the time
prosecutors say it was carving up the lysine business... [C]ompetitors lied to each other routinely, he said.
‘This is not Business Ethics 101. This is how you deal with the real world. You have to mislead the
competition.’ ” [Chicago Tribune, 9/10/1998.]
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the sense that no firm wins any customer with certainty (even though the model is deter-
ministic). Our second main result demonstrates that the best collusive equilibria within
an important class have the following properties. First, the cartel (in effect) attempts
to divide the market according to the firms’ relative advantages, and to establish a col-
lusive price, which is necessarily below the monopoly price. Second, each firm sometimes
attempts to extract even more profits from its “home market” by charging more than the
agreed-upon price. Third, when a firm engages in this “surpa-collusive” pricing, its ri-
vals sometimes successfully “steal business” in its home market. Fourth, when business
stealing occurs in the aforementioned circumstances, it goes unpunished. Thus, we demon-
strate that deliberate and unpunished business stealing (which would appear to observers
as “cheating”) can be critical to the healthy functioning of a cartel.

The intuition for our characterization of optimal imperfectly collusive equilibria runs
as follows. When perfect collusion is unsustainable, a cartel will set a price below the
monopoly level in order to reduce incentives for away firms to undercut rivals in their
home markets. However, with sub-monopoly pricing, an implicit agreement to divide the
market according to comparative advantage creates an incentive for each firm to defect to
a supra-collusive price (indeed, the monopoly price) in its home market. Occasional entry
into away markets eliminates the incentives for supra-collusive pricing in home markets.
Of course, a firm will not enter an away market in equilibrium unless it receives adequate
compensation for the costs of relationship investments for the customers in those markets.
Accordingly, the away firm must sometimes steal business successfully. Because that form
of business stealing is part of the equilibrium, it goes unpunished. However, other forms
of business stealing will trigger punishments.

Notice that this theory has a potentially testable implication: unpunished business
stealing occurs at prices above the cartel’s price target, whereas all business stealing at
prices below that target triggers punishment.∗ In practice, this implication may prove
difficult to test because a cartel’s price targets may not be known with precision (indeed,
in practice, price agreements can sometimes appear somewhat fuzzy). For this purpose,
one cannot use the average price as a proxy for the target price, because the theory implies
that some business stealing will occur at below-average prices. A more robust testable
implication of the theory is that, the higher the price at which business is stolen, the lower
the likelihood that apparent “cheating” will trigger punishement. Testing this implication
falls outside the scope of our current theoretical inquiry.

The rest of this paper is organized as follows. We present the basic model of industrial
competition in section 2. Section 3 characterizes the properties of non-collusive equilibria
(i.e., equilibria in one-shot play). Section 4 presents results for the case of two firms, and

∗Technically, in our model, business stealing below the target price occurs with probability zero. How-
ever, in a more general model it could occur for unrelated reasons, such as imperfect control over “rogue”
salespeople who have no knowledge of the cartel; see footnote 2.
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section 5 explains how those results extend to settings with more than two firms. Some
brief concluding remarks appear in section 6.

2 The model

A set of firms compete for the business of a collection of customers in an infinite sequence of
discrete periods (t = 1, 2, ...). For the time being, we assume that there are two firms (i =
1, 2) and two markets. The firms are risk-neutral profit maximizers and share a common
discount factor δ ∈ (0, 1). They are also differentiated, with each holding a (symmetric)
comparative advantage in one of the two markets. For concreteness and simplicity, we
model these advantages as pertaining to costs: the marginal cost of production is cH in a
firm’s home market and cA in its away market, where ∆c ≡ cA − cH > 0. In each period,
each firm decides whether to quote a price in each market. Price quotations are costly,
requring the firm to incur a “relationship-maintenance” expense, c.

Each consumer views the products of the two firms as perfect substitutes, and has unit
demand for all prices up to some privately known reservation value v ∼ G(·), a CDF.
(Equivalently, one can think of the market as encompassing two consumer segments, each
containing a continuum of consumers with unit measure, with deterministic but privately
known reservation values distributed according to G.) Consumers purchase the good from
the firm offering the lowest price provided it does not exceed their reservation value v, with
ties broken randomly.

Aggregate demand at price p is given by D(p) ≡ 1−G(p−).∗ We use p
i

(i = H,A) to
denote the single-firm break-even price (accounting for both ci and c), and p∗i to denote
the monopoly price. To avoid uninteresting technical complications, we assume that these
prices are well-defined and unique, and that a monopolist’s profits would increase monoton-
ically for prices between p

i
and p∗i . The assumptions can be derived from more primitive

restrictions on G, but neither the restrictions nor their derivation are enlightening in this
context. We also assume that p

A
< p∗H , i.e. that ∆c isn’t too large, to ensure that the

low-cost firm can’t simply blockade entry at the optimal single-firm price.

For each market in each period, each firm chooses a pair (π, F ), where π represents
the probability of quoting a price and F is a CDF governing the distribution of the price,
conditional upon a quotation. Both decisions (whether and what to quote) are made at
the same time, without knowledge of the other firms’ choice.

The following example concretely illustrates the type of setting our model is intended to
capture. Boeing and Airbus compete to supply commercial aircraft to airlines worldwide.
Suppose that, due to plant location, familiarity with regulatory regimes, and so forth,

∗By G(p−), we mean the limit of G(p′) as p′ approaches p from below.
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Boeing has a natural advantage in the US (for airlines such as Delta), while Airbus has a
natural advantage in Europe (for airlines such as British Airways). It is also natural to
assume that the process of preparing and submitting proposals for fulfilling carriers’ new
aircraft requirements entails substantial costs, irrespective of whether the firm wins. Our
analysis concerns the nature of imperfect collusion in such industries.

3 The non-collusive outcome

Before studying collusion, we first characterize non-collusive outcomes by studying equilib-
ria in a one-shot version of the game. The following theorem provides this characterization:

Theorem 1. There exists a unique Nash equilibrium of the stage game. In this equilibrium:

1. The home firm always quotes a price, while the away firm quotes a price with proba-
bility between 0 and 1.

2. The home firm makes profits ΠH = D(p
A

)∆c, while the away firm makes zero profits.

3. Each firm’s price distribution has full support on [p
A
, p∗H ], and is atomless except at

p∗H , which the home firm chooses with strictly positive probability.

Several features of this equilibrium merit emphasis. First, the consumer ends up paying
the price p

A
with zero probability. This is significant because it is natural to interpret p

A
as the fully competitive price, given that it reflects the lowest price that the less efficient
firm would be willing to charge. Still, the expected profits earned by each firm are the
same as if both set p

A
and the consumer purchased from the home firm. Second, because

the distribution of prices for both firms has full support on [p
A
, p∗H ], the ex post outcome

can appear arbitrarily collusive. Third, “business stealing” (defined here as the away firm
winning sales) occurs with strictly positive probability.

4 Optimal collusion

Industry profits are maximized when each market is monopolized by the low-cost firm
posting price p∗H . This outcome, which we refer to as perfect collusion, serves as a natural
benchmark against which to measure the effectiveness of a collusive arrangement.∗ We will

∗To be sure, there exist other points along the firms’ Pareto frontier. But such points are technologically
inefficient and not robust to the introduction of side transfers.
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refer to any equilibrium yielding firm profits strictly above the stage-game Nash but below
perfectly collusive levels as an imperfectly collusive arrangement.

When firms are sufficiently patient, a folk theorem result obtains and perfect collusion
is sustainable as a subgame perfect Nash equilibrium. More precisely, there exists a critical
discount factor δM < 1 above which perfect collusion is sustainable and below which it is
not. We study collusion for discount factors below δM .

We first establish that imperfect collusion is sustainable for a range of discount factors
below δM .∗ Our main result of this section goes on to characterize optimal collusion within
a natural class of equilibria. In this equilibrium, firms set a floor price p∗ and divide the
market along cost lines in each period, with firm i capturing all the business of market
i whenever he charges p∗. Any undercutting of p∗ leads to a price war yielding lifetime
continuation profits Π. On the other hand, entry into a firm’s away market at prices above
p∗ is left unpunished. In this equilibrium, each firm occasionally enters its away market at
prices above p∗ and wins the other firm’s customer. Our model thus predicts equilibrium
business stealing.

4.1 Stationary equilibria

Characterizing the Pareto frontier of a repeated game for fixed discount factors is a difficult
task. Several notable papers illustrate the complexities inherent in this task. Abreu, Pearce,
and Stacchetti (1990) construct a set-valued mapping whose largest fixed point is the set
of SPNE payoffs, but they provide few analytic properties of the set. Mailath, Obara,
and Sekiguchi (2002) characterize player-optimal pure-strategy equilibria of the repeated
prisoner’s dilemma. They show that these equilibria are often non-stationary and cyclic of
arbitrarily long period. Abreu and Sannikov (2012) examine extremal pure-strategy equi-
libria of two-player finite-action games. They show that the number of extremal equilibria
is finite and bounded by the size of the action set, and that extremal payoffs are charac-
terized by a system of nonlinear equations. We are aware of no work attempting a similar
characterization for mixed-strategy equilibria on continuum action spaces.

To retain tractability and provide sharp characterizations of optimal collusion, we there-
fore restrict attention to SPNEs exhibiting a natural stationary structure.

Definition 1. Fix an SPNE σ. We call σ a stationary equilibrium if there exists a stage-
game strategy profile τ and a set of game histories H̃∞ ⊂ H∞, the equilibrium path, such
that: 1) H̃∞ occurs with probability 1 under σ; and 2) σ(ht) = τ after all partial histories

∗This result is not entirely obvious a priori. For instance, in symmetric Bertrand competition with no
fixed costs, the equilibrium set has a “bang-bang” structure with perfect collusion sustainable for δ ≥ 1/2
and no collusion sustainable otherwise.
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ht lying on the equilibrium path.∗

This definition singles out equilibria in which behavior looks “the same” in all periods so
long as no deviations have taken place. It imposes no restrictions on equilibrium structure
off-path, as optimal penal codes are generally non-stationary. In practice the equilibrium
path is easy to identify, as it is generated by a set of “acceptable” action profiles that lead
to a repetition of the on-path strategy profile at each stage. The on-path strategy profile
τ will then consist of mixtures over this allowable action set, though possibly not with full
support over the set.

We restrict attention to stationary equilibria primarily for reasons of tractability. While
we can’t rule out the possibility that non-stationary equilibria would improve upon an opti-
mal stationary equilibrium, it is not obvious that non-stationarity provides any advantages
in our setting. Further, even within this class equilibria have a surprisingly rich struc-
ture that matches anecdotal features of real-world cartels. We are therefore confident that
stationary equilibria deliver the essential qualitative features of collusion in our model.

4.2 Optimal collusion with stationary equilibria

The main result of this part is that an equilibrium of the form described at the beginning of
the section is optimal within the class of stationary equilibria. Further, we can characterize
the maximally collusive profits that can be sustained by such an arrangement.

We first introduce a bit of notation that will be used frequently in formuating our results.
Let ΠC ≡ D(p

A
)(p

A
− cA)− c = ∆cD(p

A
) be the “competitive” profits of the home firm in

the unique Nash equilibrium of the stage game. Similarly, let ΠM ≡ D(p∗H)(p∗H − cH)− c
be the stage profits of a monopolist in his home market. Our interest lies with stationary
equilibria sustaining lifetime profits in the interval [ΠC ,ΠM ].† At the other extreme, let

∗For a pure-strategy equilibrium, the equilibrium path is a singleton set consisting of the unique game
history picked out by σ. With mixed strategies and a continuum action space, many “on-path” partial
histories might occur with probability zero, so we must proceed more delicately.
σ interpreted as a behavioral strategy profile induces, for each t, a probability measure µt on the set

of partial histories Ht (endowed with Lebesgue measure). By the Kolmogorov extension theorem, we can
uniquely extend the collection {µt}∞t=1 to a measure µ on the set of complete histories H∞. There then
exists an equivalence class of measurable subsets of H∞ with measure 1 under µ.

A stationary equilibrium singles out some member H̃∞ of this class as the “equilibrium path.” A partial
history ht ∈ Ht lies on the equilibrium path if there exists some h∞ ∈ H̃∞ such that ζt(h

∞) = ht, where
ζt is the projection operator onto the first t dimensions.

†As is standard convention in the game theory literature, we normalize the NPV of a firm’s income
stream by 1−δ to obtain lifetime profits. Lifetime profits are interpretable as a weighted average per-period
profitability, with weight δt(1− δ) on the tth period. In a stationary equilibrium, lifetime profits are equal
to the stage profits in each period on path.
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Π(δ) be the infimum of SPNE-supportable lifetime profits for a firm when the discount
factor is δ.

For profits Π ∈ [ΠC ,ΠM ], it will be useful to have notation for the price a monopolist
would charge in his hoome market to achieve profits Π. Define p∗(Π) to be this price;
formally it is the solution in [p

A
, p∗H ] to Π = D(p)(p− cH)− c. Given our assumptions on

D(·), p∗(·) is single-valued, continuous, and strictly increasing.

Finally, let δM be the minimal discount factor at which perfect collusion is sustainable.
The results of this part establish that δM < 1 and that perfect collusion is always sustain-
able above δM . Meanwhile for a range of discount factors below δM , we show that optimal
stationary equilibria exhibit a simple intertemporal structure consisting of two phases:

1. In the cooperative phase, firms agree to maintain prices above a target p∗ in each mar-
ket. Firms stay in the cooperative phase so long as no firm undercuts p∗. Following
undercutting, firms transition to the punishment phase.

2. In the punishment phase, firms engage in a price war yielding negative stage profits
to each firm. The punishment phase continues until both firms participate in the
price war for a single period, and firms then revert to the cooperative phase.

It is intuitively clear that the amount of collusion sustainable in the cooperative phase
depends on the harshness of the price war that can be promised following a deviation. But
at the same time, the harshest sustainable price war depends on the profitability of the
reward promisable as recompense for participating in the price war. Therefore, as is typical
in the analysis of repeated games, we will have to simultaneously characterize sustainable
cooperative and punishment outcomes.

We first characterize the highest cooperative payoffs taking as given a harshest pos-
sible punishment continuation Π(δ), whose value is as yet unknown. Because we restrict
attention to stationary equilibria, we don’t need to know anything more about the set of
equilibrium payoffs: on-path continuations must be equal to the equilibrium payoff, while
off-path continuations might as well be set as harshly as possible to deter deviations. The
following theorem describes optimal stationary equilibrium payoffs for given Π(δ):

Theorem 2. For all δ ≤ δM , the unique Pareto-optimal stationary equilibrium profit vector
(Π∗,Π∗) satisfies

Π∗ = (1− δ)(2Π∗ −∆cD(p∗(Π∗))) + δΠ(δ).

Further, Π∗ > ΠC iff Π(δ) < ΠC , and Π∗ is strictly increasing in δ whenever Π(·) is
non-increasing in δ.

The essence of this theorem is that optimal collusion awards each firm its entire stage
profits in its home market; profit-sharing cannot be optimal. An optimal collusive arrange-
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ment then divides the market along cost lines with a floor price p∗(Π∗) < p∗H , subject to
occasional overcharging and business stealing. In these circumstances each firm can cap-
ture extra profits Π∗ −∆cD(p∗(Π∗)) by undercutting the target price in the away market,
which must be deterred with a punishment continuation of Π(δ). At the optimum, Π∗ is
set to just saturate the resulting incentive constraint. Note in particular that the Pareto
frontier is degenerate, and both firms agree on the optimal collusive scheme. There are no
asymmetric optimal stationary equilibria.

The previous result holds no matter the specific punishments available to the firms.
The next theorem characterizes the harshest sustainable punishment for sufficiently large
δ.

Theorem 3. Suppose δ ≥ δ ≡ 1
2+∆cD(p∗H)/c . Then there exists an SPNE yielding lifetime

profits of zero to both firms. Hence Π(δ) = 0.

The punishment equilibrium supporting zero profits has a bang-bang structure, with
a short-term price war followed by optimal collusion afterward. In the first period, firms
drive prices below the break-even level. Both firms enter each market, the home firm prices
at some pPW ≤ p

H
, and the away firm mixes over a distribution with support on (pPW , p

H
].

The home firm is therefore forced to serve the market at an unprofitable price, while the
away firm loses money on his fixed costs. If both firms participate in the price war for
one period, they transition to a continuation game with lifetime profits Π∗ characterized
by theorem 2. Otherwise the price war continues. pPW is chosen so that lifetime profits
(1− δ)(D(pPW )(pPW − cH)− 2c) + δΠ∗ are set equal to zero. The restriction on δ in the
theorem ensures that pPW ≤ p

H
and thus that neither firm has a deviation worth more

than 0 (achieved by exiting both markets).

The next theorem synthesizes the results of theorems 2 and 3. Under a mild sufficiency
condition on ΠM , it shows that δ < δM . Thus there exists a range of discount factors
below δM for which optimal collusion can be completely characterized.

Theorem 4. Suppose ΠM ≥ c + ∆cD(p∗H). Then there exists a δ < δM charactered by
lemma 3 such that, for all δ ∈ [δ, δM ], Π(δ) = 0 and the unique Pareto-optimal stationary
equilibrium profit vector (Π∗,Π∗) satisfies

Π∗ = (1− δ)(2Π∗ −∆cD(p∗(Π∗))).

Further, Π∗ is continuous, strictly greater than ΠC , and strictly increasing in δ. Finally,
δM is characterized by

δM =
ΠM −∆cD(p∗H)

2ΠM −∆cD(p∗H)
,

and perfect collusion is sustainable for all δ ≥ δM .
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For δ < δ we can’t guarantee that a continuation payoff of 0 is sustainable as an SPNE.
Whenever Π(δ) > 0, maximum sustainable collusive payoffs fall below the level of theorem
2. However, the form of optimal collusion will be the same even for discount factors below
δ.

Finally, we describe a stationary equilibrium supporting profits Π∗. This construction
holds regardless of Π(δ).

Theorem 5. When δ < δM , lifetime profits (Π∗,Π∗) are supported by a stationary equi-
librium with the following on-path properties:

1. The home firm’s strategy is the same in each market, as is the away firm’s.

2. The home firm always enters, while the away firm enters with probability strictly
between 0 and 1.

3. The home firm makes stage profits Π∗, while the away firm makes zero profits.

4. Each firm’s price distribution has full support on [p∗(Π∗), p∗H ] and is continuous on
(p∗(Π∗), p∗H). At p∗(Π∗) and p∗H the home firm places atoms while the away firm’s
price distribution is continuous.

5. Business stealing occurs with strictly positive probability and is decreasing in Π∗.

6. Deviations by the away firm to prices at or below p∗(Π∗) are punished by a continu-
ation payoff of Π(δ) to that firm.

This equilibrium is unique among those whose price distributions have full support on
[p∗(Π∗), p∗H ] in each market.

This equilibrium features a “target price” p∗(Π∗) with occasional overcharging, but no
undercutting, by each firm. The home firm always participates in his market and makes
expected profits Π∗ for any price he charges, while the away firm only occasionally enters
and just makes up his fixed costs at all prices charged. Business stealing occurs with
positive probability, which decreases as the equilibrium becomes more collusive (Π∗ rises)
and goes to zero as Π∗ ↑ ΠM . However, business stealing occurs only at prices strictly above
the target price. The home firm would always capture the market if he charged exactly
the target price! As a result, business stealing actually makes the customer worse off than
a clean division of the market at the target price due to the accompanying overcharging.

4.3 The role of business stealing in collusion

We have shown that optimal collusive profits can be supported by an optimal stationary
equilibrium exhibiting business stealing. Is this equilibrium the only possible one? It turns
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out that there exist a multiplicity of optimality equilibria in which firms’ price distributions
don’t have full support on [p∗(Π∗), p∗H ]. Such equilibria can be constructed by “drilling
holes” in the full-support distribution of theorem 5. The away firm will have a profitable
deviation into each hole; but so long as the holes are sufficiently small, this deviation will
be less profitable than undercutting p∗(Π∗) and so will not tighten the IC constraints.

Despite this multiplicity, we can characterize several important features of any optimal
collusive agreement. In particular, we can show that business stealing is inevitable in
an optimal stationary equilibrium, and in fact the equilibrium of theorem 5 places a lower
bound on the amount of business stealing in an optimal stationary equilibrium. This result,
along with other properties possessed by all optimal equilibria, are stated formally in the
following theorem:

Theorem 6. When δ < δM , all stationary equilibria supporting profits (Π∗,Π∗) feature the
same target price, maximum price, and entry probabilities by each firm in each market. In
particular, the home firm always enters while the away firm enters with a fixed probability
between 0 and 1. Further, the equilibrium characterized in theorem 5 uniquely minimizes
business stealing among all stationary equilibria supporting profits (Π∗,Π∗).

The necessity of business stealing is robust to the consideration of non-optimal equi-
libria. For collusive schemes yielding profits sufficiently close to (Π∗,Π∗), any stationary
equilibrium supporting these profits must involve business stealing. To see this, take a sta-
tionary equilibrium yielding lifetime profits (Π,Π) > (ΠC ,ΠC) to each firm which exhibits
no business stealing. For simplicity, consider the case where market i is monopolized by
firm i, who charges price p∗(Π). The most profitable deviation by each firm is to overcharge
at price p∗H in his home market, and to just undercut price p∗(Π) in his away market. The
IC constraint implied by this deviation is

Π ≥ (1− δ)(Π−∆cD(p∗(Π)) + ΠM ) + δΠ(δ).

If we raise Π to Π∗, this constraint must be violated given Π∗ < ΠM . Then by continuity of
D(·) and p∗(·), there exists a Π̃ < Π∗ at which the constraint is just saturated, and above
which it is always violated.

Consider in particular the special case where the customer’s reservation value is known,
i.e. D(p) = 1 below some cutoff v. In this case the rhs of the IC constraint actually rises at
a lower rate than does the lhs as we raise Π. Therefore if any collusion is possible without
business stealing, so is perfect collusion! We collect these results in the following theorem:

Theorem 7. Fix δ < δM . Then there exists a Π̃ < Π∗ such that all stationary equilib-
ria supporting profits (Π1,Π2) > (Π̃, Π̃) exhibit business stealing. When the purchaser’s
reservation value is known, Π̃ = ΠC .
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The essence of this result is that in the absence of business stealing, each firm has an
incentive to overcharge in his home market in addition to undercutting his competitor.
To sustain substantial collusion, this overcharging incentive must be damped, which can
be accomplished via competition from the away firm at high prices. The compensation
demanded by the away firm for this competition is a share of the market large enough to
cover his entry costs, generated through occasional overcharging by the home firm. Thus
in equilibrium we must have both overcharging by the home firm and business stealing by
the away firm to eliminate profitable overcharging deviations. (Overcharging still occurs
in equilibrium, but it is no longer more profitable than following the target price.)

5 Generalization to many competitors

One implication of our results is that δM < 1/2 (by theorem 4), and thus a pair of firms
can sustain perfect collusion for discount factors bounded well away from 1. If δ is taken
literally as reflecting the market interest rate and the length between periods, then firms
that interact with any frequency should have no difficulties achieving perfect collusion. In
particular, the form of collusion below δM would be mostly irrelevant to understanding
cartel behavior.

However, δ is better interpreted more expansively as a reduced-form stand-in for a
variety of factors cutting against forward-looking behavior. For instance, firms may face
above-market internal rates of return; agency problems or leadership turnover; potential
changes in market structure; and so on. Firms might also face more than one competitor
in the market, which intuition suggests would make coordination and effective collusion
more difficult.

In this section we explore the possibility of multiple competitors in detail. We show
that collusion indeed becomes more difficult to sustain as the cartel size increases, and
that with even a moderate number of firms imperfect collusion is inevitable even at high
discount factors. We also generalize the theorems of section 4 and characterize optimal
collusion below δM , which looks broadly similar to the two-firm case. Our results thus
serve as a robustness check on the applicability of our insights about optimal collusion to
more general market structures.

5.1 Setup

We extend the two-firm market structure in a symmetric way. There are now N + 1 firms
and N + 1 markets, where N ≥ 2. In market i firm i is the home firm and produces
at marginal cost cH , while all other firms are away firms and produce at marginal cost
cA > cH . All other aspects of the model are identical to the two-firm case.
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5.2 Analyzing the stage game

Consider one-shot competition in a single market with 1 home firm and N away firms. Let
{H} ∪ I be the set of firms, with I = {1, ..., N} the set of away firms. An immediate
corollary of the existence of a two-firm equilibrium is that there exist a multiplicity of Nash
equilibria when N ≥ 2. For if H and any firm i ∈ I play the two-firm equilibrium, no away
firm will want to enter (as he would receive strictly less than i’s profits of zero). Hence
there exists at least N Nash equilibria involving competition among two firms.

In fact, there exist Nash equilibria involving every possible non-empty subset of away
firms competing with the home firm. Our main result is that there is no other multiplicity:
once a subset of away firms is chosen, there exists a unique Nash equilibrium involving
those firms. The form of this equilibrium looks broadly similar to the two-firm case, with
mixing from p

A
up to p∗H , sure entry by the home firm, and occasional entry by the away

firms. Further, the equilibrium is symmetric in that all away firms play identical strategies.
These results are summarized in the following theorem:

Theorem 8. Fix any non-empty subset J ⊂ I of away firms. Then there exists a
unique Nash equilibrium of the stage game in which every firm in J enters with positive
probability and no firm in I \J ever enters. In this equilibrium:

1. The home firm always enters and makes profits ΠH = ∆cD(p
A

).

2. Each away firm i ∈J enters w.p. strictly less than 1 and makes profits Πi = 0.

3. Each entering firm’s price distribution has full support on [p
A
, p∗H ].

4. All entering away firms play the same strategy.

There are no other Nash equilibria.

5.3 Market-symmetric equilibrium

When many firms are competing, the set of possible collusive structures is much richer
than in the two-firm case. In the two-firm case, we saw that it is always optimal to allocate
each firm all of their profits in their home market. By contrast, with at least three firms it
can be worthwhile for firms to spread their profits across multiple markets. This reduces
the profitability of undercutting in each market, and can loosen incentive constraints in
some cases.

In the Appendix we provide a fully worked example of an equilibrium which, for par-
ticular choices of c,∆c, and δ, Pareto-dominates the best equilibrium in which firms earn
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profits in only their home market. Table 1 displays the division of profits among firms for
this example when N = 2. Firms are index by row, markets are indexed by column, and
a + indicates positive profits while 0 indicates zero profits.

M1 M2 M3

F1 + 0 0
F2 + + 0
F3 0 0 +

Table 1: A non-market-symmetric division of profits

With no further restrictions on the form of the equilibrium, it is therefore difficult to
fully characterize optimal collusion. We propose a further mild condition on equilibrium
which disciplines possible cartel structures. Note that the distribution of profits in Table 1
displays two anomalous features - first, firms earn positive profits in their away markets; and
second, different (ex ante identical) away firms play different strategies, and earn different
profits, in a given market. Directly ruling out positive away firm profits would immediately
recover the optimality results of section 4, but this simply assumes the answer and is not
an obviously reasonable restriction. On the other hand, we think it reasonable that ex
ante identical firms should play identical strategies in a given market. Any other outcome
would require coordination between the away firms and bargaining over profit-sharing in
the market, which might induce cartel breakdown.

We therefore restrict attention to equilibria with a symmetry requirement within mar-
kets:

Definition 2. Fix a stationary equilibrium σ with associated on-path stage-game strategy
profile τ. Then σ is market-symmetric if, for each market m and all away firms i and j,
τ im = τ jm.

Market symmetric equilibria are a subset of stationary equilibria which require all
away firms to play identical strategies in a given market.∗ Thus divisions of profits as in
Table 1 are ruled out. Note that firms are not required to play the same strategy across
markets. Also, all stationary equilibria are trivially market-symmetric when N = 1, so
market symmetry disturbs none of our results from the two-firm case. Market symmetry
will turn out to provide the structure we need to characterize optimal collusion.

∗Alternatively, we could have required them to receive identical profits. This alternative definition
would yield identical results.
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5.4 Optimal market-symmetric equilibria

A bit of notation: let δM (N) be the minimal discount factor sustaining perfect collusion
with N +1 firms. Also let δ(N) ≡

(
1− 1

N

) (
1 + c

ΠM

)
, an important bound in our theorems

which is sometimes larger and sometimes smaller than δM (N). We defer our discussion
of its meaning for the moment. Finally, let Π(δ;N) be the minimum SPNE-sustainable
lifetime profits under discount factor δ with N + 1 firms.

Our first theorem generalizes theorem 2:

Theorem 9. Suppose δ < δM (N) and either N ≥
√

1 + ΠM/c or δ < δ(N). Then there
exists a unique Pareto-optimal market-symmetric equilibrium payoff vector (Π∗, ...,Π∗),
where Π∗ satisfies

Π∗ = (1− δ)((N + 1)Π∗ −∆cND(p∗(Π∗))) + δΠ(δ;N).

Further, Π∗ > ΠC iff Π(δ;N) < ΠC , and Π∗ is strictly increasing in δ whenever Π(·;N) is
nonincreasing in δ. Finally, Π∗ is strictly decreasing in N whenever Π(δ; ·) is nonincreasing
in N.

The content of this theorem is identical to that of theorem 2 - provided δ is not too
high, optimal collusion involves splitting profits along cost lines. The maximum sustainable
level of collusion is then characterizable and depends on the optimal punishment Π(δ;N)
which can be meted out following a deviation.

In contrast to the two-firm case, the optimality of dividing profits along cost lines isn’t
guaranteed for all δ < δM (N). We additionally need δ < δ(N), a condition which ensures
that allocating profits only to away firms in a market-symmetric way can’t do even better.
In the Appendix we provide a fully worked example showing that an arrangement with
away firms receiving all the profit from every market can sometimes Pareto-dominate the
profits characterized in Theorem 9 when δ ≥ δ(N). Table 2 reports the division of profits
in this example, in which N = 2.

M1 M2 M3

F1 0 + +
F2 + 0 +
F3 + + 0

Table 2: A cartel with all profits awarded to away firms

If δM (N) < δ(N), then this additional restriction is trivially satisfied. A sufficient
condition for this inequality to hold is N ≥

√
1 + ΠM/c, a mild lower bound on the

number of competitors relative to market size. Because this bound grows very slowly in
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ΠM/c, it is likely to be satisfied in practice. For instance, ΠM/c = 3 implies N ≥ 2 (which
is true by assumption), while ΠM/c = 15 implies N ≥ 4. Even if fixed costs were a trivial
portion of monopoly profits, say 1%, the implied bound on N would be only N ≥ 10, so
we feel this restriction is relatively innocuous.

Alternatively, we could impose no restriction on N and simply require that δ < δ(N).
The following proposition says that the range of discount factors excluded by this restriction
is small:

Proposition 1. [δ(N), δM (N)] ⊂ (1−1/N, 1−1/(N+1)). Therefore if δ ∈ [δ(N), δM (N)),
then δ < δ(N + 1) and δ > δM (N − 1).

This proposition tells us that δ ∈ [δ(N), δM (N)) is a knife-edge case: add one more
firm, and alternative collusive structures collapse because δ < δ(N + 1). Subtract one firm,
and the resulting cartel can sustain perfect collusion. The size of the problematic interval
[δ(N), δM (N)) is also of size at most 1/(N(N + 1)), and so collapses rapidly with N. We
therefore consider the possibility of alternative collusive structures an edge case that can
be safely ignored.

The next theorem generalizes Theorem 3, using a punishment equilibrium construction
similar to that theorem:

Theorem 10. Suppose δ ≥ δ(N) ≡ c
∆cD(p∗H)+(1+1/N)c . Then there exists an SPNE sup-

porting lifetime profits of 0 for each firm, hence Π(δ;N) = 0.

The punishment equilibrium is similar to the two-firm case, but is asymmetric: if firm
i is to be punished, he is matched with some other firm, say i + 1, and those two firms
engage in a price war for one period in their respective markets. All other firms stay out of
those markets and play the stage-game NE in the remaining markets. After one round of
a successful price war, firms revert to the cooperative phase. Note that δ(N) is increasing
in N, but is bounded strictly away from 1. Thus even with a large number of competitors,
minmax punishments are feasible without requiring arbitrarily patient firms.

Finally, we generalize Theorem 4, and fully characterize optimal collusive payoffs for a
range of discount factors below δM (N) :

Theorem 11. Suppose ΠM > ∆cD(p∗H) + c
N and N ≥

√
1 + ΠM/c. Then δ(N) <

δM (N) < δ(N), and for all δ ∈ [δ, δM (N)] the unique Pareto-optimal market-symmetric
equilibrium profit vector (Π∗, ...,Π∗) satisfies

Π∗ = (1− δ)((N + 1)Π∗ −∆cND(p∗(Π∗))).

Further, Π∗ is continuous, strictly greater than ΠC , and strictly increasing in δ.
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As usual, we require a mild sufficiency condition on ΠM to ensure δ(N) < δM (N).
This condition grows weaker as N grows, and is trivially satisfied for sufficiently large N.
Theorem 11 does not address the case N <

√
1 + ΠM/c. In the Appendix, we derive

another lower bound on N which ensures that δ(N) < δ(N), in which case Theorem 11
continues to characterize optimal profits for a range of discount factors.

Finally, we characterize an equilibrium supporting profits Π∗ for each firm. As in the
two-firm case, this construction holds regardless of the value of Π(δ;N).

Theorem 12. Suppose δ < δM (N). Then lifetime profits (Π∗, ...,Π∗) are supported by a
market-symmetric equilibrium with the following properties:

1) The home firm’s strategy is the same in all markets, and all away firms play the same
strategy in all markets.

2) The home firm enters w.p. 1, while all away firms enter with probability strictly between
zero and 1, which is decreasing in Π∗.

3) The home firm earns profits Π∗, while all away firms make zero profits.

4) Each firm’s price distribution has full support on (p∗(Π∗), p∗H).

5) If Π∗ > ∆cD(p
A

), the home firm places an atom at p∗(Π∗), whose size is increasing in
Π∗.

6) Business-stealing occurs with strictly positive probability, which is strictly decreasing in
Π∗ when Π∗ ≥ 1

2ΠM .

7) Any unilateral deviation by an away firm to a price at or below p∗(Π∗) results in a
continuation payoff of Π(δ;N) to that firm.

This result mirrors the optimal collusive structure of the two-firm case, and features
business-stealing for the same basic reason.

5.5 Imperfect collusion in large cartels

The following theorem explores how the range of discount factors for which we have char-
acterized optimal collusion varies with cartel size.

Theorem 13. δ(N) and δM (N) are strictly increasing in N, and limN→∞ δ(N) < 1 while
limN→∞ δ

M (N) = 1. Further, δM (N)− δ(N) is increasing in N.
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Because δM (N) goes to 1 as N grows large, imperfect collusion is inevitable even with
patient firms when the cartel is large. The minimal discount factor required to sustain
a price war yielding zero profits also grows with N, but more slowly. Thus the range of
discount factors for which we completely characterize optimal collusion expands with cartel
size. This theorem demonstrates the robustness of our results in the many-firm case. It
also illustrates that the structure of imperfectly collusive arrangements remains relevant
even when firms are relatively patient.

6 Conclusion

An important empirical feature of many real-world cartels is the presence of apparently
deliberate, unpunished cheating. Existing theories of collusion in repeated games struggle
to explain this observation, as they predict that cheating does not occuring equilibrium,
and if it does it must lead to a price war or other punishment as a deterrent. We have
attempted to bridge this gap by constructing a theory of equilibrium business stealing in
imperfect cartels. Our theory considers a model in which posting prices is costly, and
focuses on discount factors for which some, but not perfect, collusion is sustainable.

We find that, within a natural class of equilibria, optimal collusion necessarily entails
business stealing. Moreover, equilibria sustaining optimal collusion look very much like
imperfectly enforced cartel agreements fixing prices and dividing markets. Cartel members
attempt to divide the market according to firms’ cost advantages at a fixed price, but
occasionally overcharge in their own market and post prices above the target price in their
competitors’ markets. Business stealing above the target price is met with forbearance,
yielding a prediction of equilibrium cheating.

A primary feature of collusion in our model is that not all business stealing is created
equal. Business stealing below a floor price is punished harshly and never occurs in equi-
librium, while business stealing above the price floor is both accepted and critical to cartel
functioning. The stark divide between acceptable and unacceptable business stealing in
this model would be qualified in an extension with imperfect monitoring, say due to ran-
dom price cuts by sales staff. Nonetheless, a robust testable implication of our theory is
that business stealing at high prices will trigger punishment less frequently than at low
prices.

18


